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Received 19 September 1996, in final form 31 December 1996

Abstract. We study, using the damage spreading method and within the heat bath dynamics,
the dynamical behaviour of the square lattice three-state Potts ferromagnet subjected to an
external field. In the zero field case, we verify that this very simple model presents, besides
the transition consistent with the equilibrium one, a new dynamical chaotic phase with unusual
features. Although the unexpected transition occurs, within the error bars, at the static Ising
critical temperature, it is in the directed percolation universality class. We observe that the
application of a uniform magnetic field does not destroy any of the two transitions, while the
unexpected one is annihilated by a new kind of field which plays the role of a conjugate field
to the Hamming distance.

1. Introduction

The damage spreading technique [1–22] has been greatly employed in the study of time-
dependent critical phenomena in spin systems. In this method one essentially monitors the
time evolution of two or more copies of the same system with different initial configurations
subjected to a specific dynamics and to thesame thermal noise. The usual monitored
quantity is the Hamming distance ordamage, D(t), defined as the fraction of elements
which differ between the two configurations. The variation of the damage and related
quantities with time, temperature, initial conditions and any other relevant parameter leads
to information about the criticality of the system.

The results from the damage spreading process can be quite different for distinct
dynamics (see, for example [21]). For instance, in the Ising ferromagnet the spreading
transition seems to coincide with the static critical temperature [2–4, 17] if one uses the heat-
bath dynamics, while the opposite happens within the Glauber stochastic process [7, 18].

In more complex systems, such as the two-dimensional (2D) anisotropic next-nearest
neighbour Ising (ANNNI) model [3], the three-dimensional (3D) and mean-field spin
glasses [2, 10, 16], the 2DXY ferromagnet [5], the 3D Heisenberg model [13], thep-
state(5 6 p 6 10) clock model [12] and a soluble dilute ferromagnetic model [11], it has
found more than two dynamical phases where a few of them have no clearly known static
equivalent. In the 3D spin glasses within the heat-bath dynamics [2, 10] and the 2DXY
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ferromagnet within the Metropolis dynamics [5], three different regimes were obtained where
the lower transition temperature seems to agree with the equilibrium one, and it corresponds
to the temperature above which the damage looses its dependence on the initial damage.
The upper transition temperature (above which the damage vanishes) is consistent, in the
case of spin glasses, with the temperature below which stretched exponential relaxations
start to appear [23, 24].

All systems with three or more dynamical phases that have been studied so far have
some complex features, such as competing interactions, dilution, continuous symmetry, non-
trivial discrete symmetry (Zq for q > 5), etc. One, then, may pose the question whether
this would be possible in a system without such degree of complexity. We verify herein,
through the damage spreading technique, thata very simple model, namely the square lattice
three-state Potts ferromagnet subjected to the usual heat-bath dynamics, has athree-phase
structure. Its corresponding static model has been extensively studied (for a review on the
q-state Potts model see [25]) and, in particular, it has a continuous para-ferromagnetic phase
transition at the exact critical temperaturekBTc(q = 3)/J = [ln(1+√3)]−1 with precisely
determined critical exponents. Much less is known about its dynamics. In particular, a
lot of emphasis has been given to the determination of the dynamic critical exponent,z,
calculated at the dynamical transition which occurs at the mentioned equilibriumTc. The
region aboveTc has not, to our knowledge, been explored such that one could guarantee
that there is no change of regime in this region. Notice also that the investigation of the
dynamical behaviour of the Potts model through the damage spreading technique has not
been published†.

Another interesting point which has hardly been investigated is the identification of the
conjugate field associated with continuous dynamical transitions. It has been found [7, 18]
in the 2D and 3D Ising ferromagnet subjected to the Glauber dynamics, that an external
uniform magnetic field,B, does not destroy the damage transition. Recently, two of us
[15] have verified that a new kind of external field,h, introduced in literature [28] in the
context of cellular automata (see also [29] for a mean-field version of it), plays the role of
a conjugate field to the Hamming distance in the case of the Ising ferromagnet subjected to
the heat-bath stochastic process. This field is defined as the frequency at which different
random numbers are used for updating the two replicas. We also study, in this paper, the
influences of both external fields,B andh, on the dynamical transitions of the 2D three-state
Potts ferromagnet.

The outline of this paper is as follows. In section 2 we describe the above model and
the spreading of damage method which we use. In section 3 we present our results in a zero
field, while in section 4 we study the influence of external fields on the dynamical phase
diagram. Finally, the conclusions are given in section 5. Notice that a short account of part
of the zero field results has already been reported [30].

2. Model and method

Let us associate with each site,i, of the square lattice a Potts variable,σi , which can assume
q = 3 integer values(σi = 0, 1and 2) and consider the Potts ferromagnet model described
by the following Hamiltonian:

H = −J
∑
〈ij〉

δ(σi, σj )− B
∑
i

δ(σi, 0) (σi = 0, 1, 2, . . . , q − 1) (1)

† We have learnt of two related works in progress [26, 27], one of them [26] studying the appearance of first-order
dynamical transitions for higher values of the number ofq-states.



Damage spreading in a 2D Potts ferromagnet 2331

whereJ > 0 is the ferromagnetic coupling constant between nearest-neighbour spins,B is
an external homogeneous magnetic field applied to the stateσi = 0, andδ(σi, σj ) is the
Kronecker delta function. The first sum is over all the nearest-neighbour spins〈ij〉, while
the second one is over all sites,i, of the square lattice.

Later on, instead of a magnetic field, we shall apply the above mentioned external field,
h, in order to check whether it destroys any of the transitions ath = 0 and whether it leads
to the divergence of its associated susceptibility at its transition temperature.

Our numerical simulations are implemented on squares withN spins and linear size
L(N = L2sites) submitted to periodic boundary conditions. To update the spin variables
we use a sequential Monte Carlo heat-bath process (in a fully vectorized code). At each
Monte Carlo step (MCS)t and for a given spinσi(t) at sitei, we first compute the energy
differences1Eαβi (t) = E

β

i − Eαi for changing the spinσi(t) at the stateα into the state
β(α, β = 0, 1, 2), and afterwards calculate the probabilitiesp(α)i (α = 0, 1, 2) for σi(t + 1)
to be in the stateα, namely:

p
(0)
i = [1+ exp(−β1E(01)

i )+ exp(−β1E(02)
i )]−1 (2)

p
(1)
i = [1+ exp(β1E(01)

i )+ exp(−β1E(12)
i )]−1 (3)

p
(2)
i = [1+ exp(β1E(02)

i )+ exp(β1E(12)
i )]−1 = 1− p(0)i − p(1)i (4)

whereβ = 1/kBT andT is the temperature of the system. The new stateσi(t + 1) of the
spin, σi , is then determined by comparing a chosen pseudo-random numberri(t) ∈ [0, 1]
with the above probabilities according to the following rule:

σi(t + 1) =


0 if ri(t) 6 p(0)i
1 if p(0)i < ri(t) 6 p(0)i + p(1)i
2 if p(0)i + p(1)i < ri(t) 6 1.

(5)

Let us consider two different initial configurations,{σ (A)i (0)} and{σBi (0)}, at timet = 0
and let them evolve according to the above dynamics submitted to thesamethermal noise,
i.e. using the same sequence of random numbers for updating the spins. We shall compare
the two configurations,{σAi (t)} and {σBi (t)}, through the following distanceD(t) between
them:

D(t) = 1

N

N∑
i=1

[1− δ(σAi (t), σBi (t))] (6)

where the sum is over all theN sites. Defined in this way,D(t) is the fraction of spins
which differs in the two replicas at timet .

In order to averageD(t) over thermal fluctuations we repeat the simulations forM

samples, which leads to the average damage〈D(t)〉:

〈D(t)〉 = lim
M→∞

∑M
s=1Ds(t)

M
(7)

whereDs(t) is the distance measured at time,t , for the sth sample.
If two configurations become identical at time,t , they will remain identical for all later

times since they are updated with the same sequence of random numbers. Consequently
we can introduce thesurvival probability, P(t), of two configurations remaining different
at time,t , given by

P(t) = lim
M→∞

M1(t)

M
(8)
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Figure 1. The survival probability,P(t), versus temperature for different values of time. The
data fort = 9000 and 10 000 coincide within the scale used.M = 100 samples of linear size
L = 64 with set (c) of the initial configurations (whereD(0) = 0.05) were examined.

whereM1(t) is the number of samples such that{σAi (t)} and {σBi (t)} are still different at
time t . Therefore, we can rewrite (7) as

〈D(t)〉 = 〈d(t)〉P(t) (9)

where〈d〉 is measured over only thoseM1(t) samples which have survived.
Throughout this paper we consider principally three different sets of initial configurations

for the two replicas, namely
(a) ordered along distinct states:{σAi (0) = 0, ∀i} and{σBi (0) = 1, ∀i}(D(0) = 1);
(b) configuration{σAi (0)} is random and configuration{σBi (0)} = {σAi (0)} except for

50% of the spins which are randomly chosen and given any of the two other possible states
with equiprobability(D(0) = 1

2);
(c) same as in (b) except for 5% of the chosen spins that are different(D(0) = 0.05).
As we will see in the next section, in some situations we need to compare the evolution

of three distinct replicasA, B and C. In this case, we use the following set of initial
configurations:

(d) same as in (b) and configuration{σCi (0) 6= σAi (0)∀i} where each spin of replica
C is given any of the two other possible states with equiprobability(DAB(0) = 1

2 and
DAC(0) = 1).

3. Zero field results

3.1. Dynamical phase diagram

In figure 1 we show the survival probability,P(t), as a function of temperature,T , for
set (c) of the initial configurations at different times,t , examining samples of linear size
L = 64. First, notice that, att = 10 000,P(t) has already achieved a stationary value for
this size. In view of its temperature dependence, we clearly observethree distinct regimes:
(i) a low-temperature regime (forT < T2, with T2 ' 1.0) whereP varies in a non-abrupt
way with T ; (ii) an intermediate regime (forT2 6 T < T1, with T1 ' 1.2) whereP = 1 for
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Figure 2. Time evolutions of〈D(t)〉 (— · · —) 〈d(t)〉 (· · · · · ·) and the survival probabilityP(t)
(— · —) for the fixed temperatures (a) kBT /J = 0.90 and (b) kBT /J = 1.06. The simulations
were performed onM = 100 samples of linear sizeL = 64 with set (b) of the initial conditions
(D(0) = 1

2). In (a), we also represent by a full line, the results for an initial damageD(0) = 1
(set (a) of the initial configurations) where〈D(t)〉 = 〈d(t)〉 sinceP(t) = 1 in this case.

all T ; and (iii) a high-temperature regime (forT > T1) whereP = 0. Similar behaviours
(not presented herein) are obtained for other sizes (L = 16, 32 and 128) and for set (b) of
the initial configurations. The abrupt variations ofP nearT1 andT2 indicate the existence
of dynamical transitions at these temperatures. Leroyer and Rouidi [12] observed a similar
behaviour, starting fromD(0) = 1, in the two higher transition temperatures (see [12,
figure 9]) of thep-state clock model(5 6 p 6 10). This is in contrast to the behaviour
found for the 3D Ising ferromagnet [2] whereP , for any fixedD(0), decreases slowly with
an increasingT until it vanishes at the critical temperature.

In figures 2 we exhibit the temporal behaviours ofP(t), 〈d(t)〉 and 〈D(t)〉 for fixed
temperatures using set (b) of the initial configurations. For a temperatureT = 0.90< T2, we
see from figure 2(a) that all these three quantities remain more or less stationary during the
first MCS (roughly around 500 MCS) and afterwards vary during a transient time interval,
1t0, until they fluctuate around non-zero stationary values. We observed similar behaviours
(not presented herein) for other values ofT < T2 and, as the temperature increases towards
the transition temperatureT2, the time1t0 becomes longer and longer. For comparison,
we also present in figure 2(a) 〈d(t)〉 (full line) for set (a) of the initial configurations: this
line coincides with〈D(t)〉 since we have observed in our numerical simulations that, for
D(0) = 1, P(t) equals 1. Notice that〈d(t)〉 for both sets (a) and (b) of the initial conditions
seem to converge to the same long-time limit, while this fact does not occur with the damage
〈D(t)〉. Therefore,〈d(t)〉 is not a convenient distance for studying the evolution of the two
replicas forT < T2 since, if one waits for a sufficient long but finite time, one will not see
the low-temperature regime (i). In other words, in this situationT2 would tend to zero as it
happened in the Ising ferromagnet [2] whose temperature behaviour ofP(t) has onlytwo,
instead of three regimes.

For T = 1.06, one can see from figure 2(b) that the transient interval,1t0, is very small
(1t0 is roughly 100 MCS) andP(t) equals 1, leading thus to the equality〈d(t)〉 = 〈D(t)〉.
As we change the temperature in this intermediate regime(T2 6 T < T1), we obtain
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Figure 3. Plot of 〈D(t = 10 000)〉 versus the initial damageD(0) for the fixed temperatures
kBT /J = 0.80 (represented by full dots) andkBT /J = 1.04 (represented by empty dots). The
results fort = 1000 are also shown (by squares) whenT = 1.04. We performed the averages
overM = 20 samples of sizeL = 64 at kBT /J = 1.04, while the number of replicas varied
from 50 to 1000 at the other temperature. The inset shows the results forkBT /J = 0.80 in the
region nearD(0) = 0.

(not shown herein) a similar behaviour, with1t0 increasing as we approachT1. In this
whole temperature regime the simulations remain unaltered if we use other sets of initial
configurations, showing that both〈D(t)〉 and 〈d(t)〉 become independent ofD(0) and that
P(t) = 1 in this region.

In the high-temperature regime (iii) (forT > T1), our simulations (not exhibited herein)
show thatP(t), 〈d(t)〉 and〈D(t)〉 fall off to zero after a transient time interval,1t0, which
decreases rapidly to zero as we increase the temperature difference betweenT andT1.

For the reasons given above, we will henceforth focus our attention exclusively to
quantities which are averaged overall M samples, rather than over theM1 configurations
which have survived.

The sensibility of the long-time limit〈D〉 to the initial conditionsD(0), for fixed
temperatures, can be appreciated in figure 3. In the intermediate phase (illustrated for
T = 1.04) 〈D〉 is independent of the initial non-zeroD(0), while the opposite happens in
the low-temperature regime (illustrated forT = 0.8) where〈D〉 is infinitesimally small for
an infinitesimalD(0) and increases almost to 1 asD(0) becomes 1. Taking into account
also thatP(t) = 1 in the intermediate phase, we can thus say that this regime isfully chaotic
in the sense that even two configurations infinitesimally close att = 0 will always become
separated by afinite distance.

The three temperature regimes can be also seen in the plot of〈D(t)〉 as a function of
T , for different initial conditions, exhibited in figure 4. We observe the following: (i) for
T < T2, 〈D(t)〉 is non-zero and depends upon the initialD(0); (ii) for T2 6 T < T1, 〈D(t)〉
is non-zero and is independent of the initialD(0) and (iii) for T > T1, 〈D(t)〉 = 0 for
any initial D(0). This plot corresponds to simulations performed forL = 64, M = 100
samples andt = 10 000. The same figure is obtained for 5006 t < 10 000 except in
the neighbourhoods ofT1 and T2, indicating that outside these small temperature ranges
〈D(t)〉 seems to have already reached its long-time limit〈D〉. In view of the system size
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Figure 4. Average damage〈D〉 versus temperature for three different initial damages (a)
D(0) = 1, (b) D(0) = 0.5 and (c) D(0) = 0.05. Simulations were performed forM = 100
samples of linear sizeL = 64 andt = 10 000.

dependence,〈D〉 does not vary much withL, the most accentuated differences occurring
near the temperature transitionsT1 and T2. The three-phase diagram that we obtained is
similar to those found in the 3D spin glasses [2] and the 2DXY ferromagnet [6].

The low-temperature regime (i) is consistent with the known phase space structure
of the ferromagnetic phase (three distinct valleys with the same energy but different
magnetizations): two initial configurations far enough from each other in phase space (such
that they are in different valleys att = 0) will remain confined there and keep a finite
distance for a long time. This distance presents memory effects (i.e. it remembers for a
very long time the initial distance) and it increases monotonously with an increasingD(0).
The high-temperature regime (iii) can also be easily understood in terms of the phase space
of the paramagnetic phase (one single valley): two configurations will always meet since
they are in the same valley and, hence, the damage vanishes. But what is not clear is
the phase space structure corresponding to the intermediate temperature regime (ii) where
two distinct initial configurations keep a distance for a very long time (sinceP(t) = 1)
and always achieve the same long-time distance for a fixed temperature, no matter how
close they are att = 0. Maybe this unusual behaviour could be due to a very flat phase
space where any two configurations would evolve like two random walks in the phase space
which, because of the high dimension, do not meet at reasonable times.

In view of the temperature dependence of the fluctuationσ(t) (given by√
〈D2(t)〉 − 〈D(t)〉2) of the average distance〈D〉, our simulations (not exhibited herein)

shows that, for set (a) of the initial conditions, there is an almost null fluctuation in
the low-temperature regime, except near the transition (T2) where it rises abruptly. A
similar behaviour was detected, forD(0) = 1, in the lowest transition of thep-state
clock model (46 p 6 10) [12]. In figure 5(a), we show a typical distribution of
distances (aftert = 10 000) far fromT2, which has a unique peak atD ' 1 indicating
that all pairs of configurations (which were initially in one of the ferromagnetic ground
states) have fallen into different valleys in the free energy landscape. When the pairs of
initial configurations are far from any of the ferromagnetic ground states, the fluctuation
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Figure 5. The distribution of distances aftert = 10 000 on a 64× 64 lattice for set (a)
(D(0) = 1) and set (b)(D(0) = 1

2) of the initial configurations at temperatures (a) T = 0.5
and (b) T = 1.06. Simulations were performed forM = 500 samples atT = 0.5 andM = 100
at t = 1.06. We found, in (a) 〈D〉 ' 1.00 andσ ' 0.0005 whenD(0) = 1, and〈D〉 ' 0.57
and σ ' 0.44 whenD(0) = 0.5. In (b) we obtained, for both initial conditions,〈D〉 ' 0.25
andσ ' 0.04.

σ(t = 10 000) is relatively large. This is due to the fact that the pairs which have a non-zero
D(t = 10 000) 6= 1 will still take a relatively long time (asT is not high) to jump the energy
barriers among the valleys until they achieve either the same (D = 0) or different valleys
(D = 1). The hatched histogram in figure 5(a) illustrates such a case for set (b) of the
initial conditions andT = 0.5. As to the behaviour ofσ in the intermediate temperature
regime, we observed, forT not very nearT2, small fluctuations of〈D〉 which decreases with
an increasing temperature until it vanishes atT1. Furthermore, the distribution of distances
is independent of the initial conditions, as illustrated in figure 5(b) for sets (a) and (b) of
the initial configurations. The fact that the system evolves with small fluctuations in the
intermediate temperature regime has also been found in the unexpected phase of thep-state
clock model (56 p 6 10) [12].

Since the finite time and size effects are more serious near the transition temperatures
T1 and T2, we follow the finite size scaling procedure [4, 6, 17] in order to obtain more
reliable estimates for these transition temperatures. For this, we first compute the following
average quantities overM samples of linear size,L, at the temperatureT :

τ1(L, T ) =
∑

t t〈D(L, T , t)〉∑
t 〈D(L, T , t)〉

(10)

τ2(L, T ) =
∑

t t
2〈D(L, T , t)〉∑
t 〈D(L, T , t)〉

(11)

and the ratio

〈R(L, T )〉 = τ2(L, T )

τ 2
1 (L, T )

(12)

where each sample,s, was iterated until its distance,Ds , had vanished.τ1 and τ2 are
measures of average characteristic times for two configurations to meet, and both depend
upon the size,L, and the temperatureT .
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Figure 6. The ratio〈R〉 = 〈τ2/τ
2
1 〉 versus temperature for distinct sizesL. The numberM of

used samples was at most 16 000, 10 000 and 500 forL = 16, 32 and 64, respectively. The
initial damage wasD(0) = 1 (set (a) of the initial configurations). The error bars are smaller
than the symbols. The arrow represents the exact static Ising critical temperature.

One expects the following finite size scaling forms for largeL in the neighbourhood of
the transition temperatureT1:

τ1(L, T ) ≈ u(L)f1(v(L)(T − T1)) (13)

and

τ2(L, T ) ≈ u2(L)f2(v(L)(T − T1)) (14)

and consequently

〈R(L, T )〉 ≈ f3(v(L)(T − T1)) (15)

whereu(L) gives the size dependence atT = T1 (usuallyu(L) andv(L) are power laws).
We conclude from equation (15) that〈R(L, T )〉 becomes independent ofL at T = T1.
Therefore if we use sufficiently large sizesL1, L2, L3, . . . their corresponding curves of
〈R〉 versusT should cross at the same temperatureT1. In figure 6 we show the plots
of curves〈R(L, T )〉, where we have usedL = 16, 32 and 64 and set (a) of the initial
conditions. From this we estimate that

kBT1

J
= 1.13± 0.01. (16)

Other initial conditions would give different curves, but crossing at the same temperature
given by (16). Notice that this value is unexpectedly close to the exact static critical
temperaturekBTc(q = 2)/J = [ln(1+ √2)]−1 = 1.134 59. . . of the square lattice Ising
ferromagnet.

In order to determine the other transition temperature,T2, we follow the same procedure
used for theXY model in [6]. Consider, thus, three different replicasA, B andC and define
the following measure1(t) for comparing the evolution of{σAi (t)}, {σBi (t)} and {σCi (t)}
starting from chosen initial configurations{σAi (0)}, {σBi (0)} and{σCi (0)}:

1(t) = DAC(t)−DAB(t). (17)
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Figure 7. 〈1〉 as a function of temperature. The simulations were performed att = 2000 for
M = 200 samples of sizeL = 64 with set (d) of the initial conditions.

The temperature dependence of the average〈1(t)〉 using set (d) of the initial conditions
is shown in figure 7. From figure 7 we see that〈1(t)〉 for a sufficiently long time,t , plays
the role of an order parameter for the continuous transition atT2 similar to the role of〈D〉
for the transition atT1. We can thus characterize the three dynamical phases in terms of
the two order parameters〈D〉 and 〈1〉 as (i) for T < T2, 〈D〉 6= 0 and〈1〉 6= 0; (ii) for
T2 6 T < T1, 〈D〉 6= 0 and〈1〉 = 0; (iii) for T > T1, 〈D〉 = 〈1〉 = 0.

Defining τ (1)1 (L, T ), τ (1)2 (L, T ) and 〈R(1)(L, T )〉 in a similar way to the respective
equations (10)–(12), with〈D(L, T , t)〉 being replaced by〈1(L, T , t)〉 (and iterating each
sample until〈1s(L, T , t)〉 vanishes for the first time) we obtain the temperature dependence
of the average〈R(1)〉 illustrated in figure 8. These curves cross at the temperature

kBT2

J
= 0.99± 0.01. (18)

Notice that this estimate for the temperature transitionT2, below which〈D〉 depends
on the initial damage, is very close to the exact critical temperature 0.994 97. . . of the
three-state Potts ferromagnet at thermal equilibrium. A similar observation has been made
for the 3D spin glasses [2] and the 2DXY model [6].

3.2. Dynamical critical exponents

Similar to Wanget al [17], we compute the relaxation time critical exponentsz1 ≡ z(T1)

and z2 ≡ z(T2) (defined asτ ∼ ξz, whereτ and ξ are the respective temporal and spatial
correlation lengths) through the respective average timeτ1(L, T1) andτ (1)1 (L, T2) for 〈D〉
and〈1〉 to vanish, in other words, we suppose that

τ1 (L, T1) ∼ Lz1 (19)

and

τ
(1)

1 (L, T2) ∼ Lz2. (20)
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Figure 8. The ratio〈R(1)〉 = 〈τ (1)2 /(τ
(1)
1 )2〉 versus temperature for different sizes. We used at

mostM = 10 000, 1000 and 250 replicas for the respective sizesL = 16, 32 and 64 with set (d)
of the initial configurations. The error bars are smaller than the symbols. The arrow represents
the exact static critical temperatureTc (q = 3).

Figure 9. Log–log plots of the vanishing times (a) τ1 and (b) τ (1)1 against the linear lattice size,
L, calculated at the temperaturesTc (q = 2) andTc (q = 3), respectively. In (a) we averaged
over 16 000, 10 000, 4000 and 500 samples of respective linear sizesL = 8, 16, 32 and 64 with
initial damageD(0) = 1

2 (set (b) of the initial configurations). In (b) we usedM = 40 000,
20 000, 20 000 and 7000 of respective sizesL = 8, 16, 32 and 64 with set (d) of the initial
conditions. The straight lines correspond toz = 1.54 (figure 8(a)) andz = 2.28 (figure 8(b)).

In figures 9(a) and (b) we present the respective log–log plots ofτ1 andτ (1)1 versusL,
where the simulations were performed at theexactstatic critical temperaturesTc (q = 2)
andTc (q = 3) which we believe to be the exact values forT1 andT2. From the slope of
the lines we estimate that

z1 = 1.54± 0.02 (21)
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Figure 10. Log–log plot of〈D〉 versus time,t , at the following fixed temperatureskBT /J from
top to bottom: 1.131, 1.1325,kBTc(q = 2)/J and 1.137. The results were averaged over 100
samples of linear sizeL = 256 with initial damageD(0) = 1 (configurations{σAi (0)} is random
and configuration{σBi (0)} 6= {σAi (0)}∀i). The broken curve (whose intercept is arbitrary) has
the gradient−0.46 predicted from the directed percolation.

and

z2 = 2.28± 0.03. (22)

Notice thatz2 compares well with the recent accurate valuez ' 2.196 computed for the
three-state Potts model from short-time dynamics [31] and with other previous results where
2.1 6 z 6 2.8 (see [32] and references therein, [33]). In contrast,z1 is far from the recent
accurate value 2.172±0.006 [19] and from other results(1.9< z < 2.3) quoted in literature
for the 2D Ising ferromagnet [32, 14, 17, 20, 21]. This indicates that the dynamic transition
at T1, although consistent with the static Ising critical temperature, is not in the Ising
universality class since the damage spreading technique within the heat-bath dynamics has
led, for the Ising model, to estimates forz [14, 17, 19–21] which agree with those derived
from other methods. Notice that a similar discrepancy in the universality class also happens
in the upper transition of spin glasses, whereT1 corresponds to the critical point of the
bond-frustrated percolation and the critical exponents are in the standard bond percolation
universality class [10, 34].

In figure 10 we present the temporal behaviour of〈D(t)〉 for L = 256 at different
temperatures in the range 1.1316 T 6 1.137. In the case ofT = Tc(q = 2) we have also
obtained〈D(t, L = 128)〉 (not shown herein) which, for 60< t < 200, becomes identical
to 〈D(t, L = 256)〉 and has a power law decay (〈D(t)〉 ∼ t−δ) [4, 17–19]. In general
〈D(t, L)〉 is expected to follow [4], atT = Tc and t � 1 andL� 1, the finite size scaling
form 〈D(t, L)〉 ∼ L−δzf (t/Lz) wheref (x) ∼ x−δ (for x � 1) leading thus, fort � Lz,
to the above mentioned time decay. Therefore the time range 60< t < 200 over which
our results for〈D(t, L)〉 become size independent corresponds to the validity region of the
power law decayt−δ. Taking this into account, from figure 10 we can extract an estimate
for T1 which has a better accuracy than that of equation (16), namely:

kBT1

J
= 1.135± 0.003. (23)
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Figure 11. The average damage〈D(t = 10 000)〉 as a function of temperature for a magnetic
field strengthB = 0.01 and set (a) of the initial configurations (empty squares) and set (b) (empty
circles). For comparison, we also represent (by full triangles) the results in a zero magnetic field
with initial damageD(0) = 1. We used 200 samples of sizeL = 64.

From the slope of〈D(t)〉 at T = T1 in this time region we obtain that

δ = 0.46± 0.03 (24)

which is compatible with the valueδ ' 0.46 for the directed percolation (DP) in 2+ 1
dimensions (see [18] and references therein). A similar value was obtained in [18] where
the spreading transition temperature disagrees with the static critical temperature. Our result
(as well as that of [18]) supports Grassberger’s conjecture [35] since the transition atT1

does not coincide with the static three-state Potts one.
We have also examined the time evolution of〈1(t)〉 at temperatures aroundT2. Our

curves (not shown herein) also present a power law decay atT = Tc (q = 3), but our
statistics (2000 samples of sizeL = 256) was not sufficient for computing a reliable
estimate ofδ since in this case the survival probability of1 is considerably smaller than 1
and the relaxation time is much larger(τ (1)1 ' 60τ1for L = 256).

4. Influence of external fields

In figure 11 we illustrate the long-time〈D〉 as a function of temperature,T , when a magnetic
field of strengthB = 0.01 (see equation (1)) is applied. The simulations were performed
for set (a) of the initial conditions (represented by squares) and set (b) (represented by
circles). For comparison, we also include points (represented by triangles) corresponding to
a zero-field and set (a) of the initial configurations. From this we see that both transitions
persist under the application of a small magnetic field (notice that for a sufficiently large
field 〈D〉 vanishes for allT ), similar to the 2D [18] and 3D [7, 18] Ising ferromagnets with
Glauber dynamics. Consequentlythe magnetic field is neither the conjugate field associated
with the order parameter〈D〉 nor that associated with〈1〉.

A new kind of external field,h, was introduced a few years ago [28], in the context
of the Domany–Kinzel cellular automaton (see [36]), which destroys the damage transition
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Figure 12. The temperature dependence of〈D(t = 4100)〉 for different values of the external
field h. We usedM = 100 samples of linear sizeL = 64 with set (b) of the initial configurations.

and leads to the divergence of its associated susceptibility.

χh ≡ ∂〈D〉
∂h
|h→0 (25)

at the transition. They definedh asthe frequency at which distinct random numbers are used
to update the two replicas, weakening thus the coupling between the replicas. A mean-field
analysis [29] of this cellular automaton predicted the same type of behaviour forχh. More
recent numerical simulations of the damage spreading on the 2D Ising ferromagnet [15]
also show thath plays the role of a conjugate field to the Hamming distance〈D(t)〉.

The results of the application of such an external fieldh (for h = 0.005 andh = 0.010)
are exhibited in figure 12; for comparison〈D(t)〉 for h = 0 is also shown. One can clearly
see that a smallh destroys the continuous damage spreading transition observed forh = 0 at
T = T1. Since there is no analogue with the fluctuation-dissipation theorem for the damage,
we obtain an approximation for the zero-field susceptibility,χh, by calculating the variation
of the damage〈D(t)〉 corresponding to a small change ofh. Figure 13 displays these
approximations forχh versusT for the above values of the field. We observe, similar to the
2D Ising ferromagnet [15], a tendency forχh to diverge near the corresponding transition
temperatureT1 ash→ 0, indicating thus thath is the conjugate field〈D〉. In view of the
other transition atT2, the situation is more complicated since it involves the comparison
of three replicas. If one definesh as, for example, the frequency at which distinct random
numbers are used to update thethree replicas, then the application of a smallh increases
〈1〉 at any fixed temperatureT < T2, but it does not prevent〈1〉 vanishing above a certain
temperature. We have also tried other similar definitions forh, but we have not succeeded
in finding a conjugate field to〈1〉.

5. Conclusions

The dynamical behaviour of the three-state Potts ferromagnet on the square lattice is
investigated through the damage spreading method within the heat-bath dynamics. We
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Figure 13. Approximations for the susceptibilityχh (defined in equation (5)) versus temperature
obtained from the results of figure 11. The arrow represents the exact static Ising critical
temperatureTc (q = 2).

found that this is the simplest spin model studied so far which presents a three-phase
structure similar to that encountered in more complex systems, such as the 3D spin glasses
[2, 10] and the 2DXY ferromagnet [5]. Furthermore, the unexpected chaotic phase which
appears above the static Potts critical temperatureT2 = Tc(q = 3) and below the static Ising
oneT1 = Tc (q = 2) has unusual features. In this phase, two initial configurations remain
different for a very long time (since the survival probability,P(t), equals 1) and always
achieve, for a fixed temperature, the same long-time Hamming distance no matter how close
they are att = 0. Maybe this is due, in terms of free energy landscape, to an extensive
flattening where any two configurations would evolve like two random walks which do not
cross at reasonable times because of the high dimensionality of the phase space. Another
odd result concerning the new phase was obtained, namely: despite its upper boundaryT1

occurs, within the error bars, atTc(q = 2), its corresponding dynamic critical exponentz1

differs a lot from the reported values for the Ising model. The short-time decay exponent,δ,
of the Hamming distance indicates that this transition is in the(2+1)-dimensional directed
percolation universality class, in agreement with Grassberger’s conjecture [35]. We have
also verified that the new kind of external field,h, introduced a few years ago [28] plays
the role of a conjugate field to the order parameter〈D〉 of this transition, i.e. it destroys the
transition atT1 observed ath = 0 and its associated susceptibility diverges atT1.

It would be interesting to investigate the long-time behaviour of the spin auto-correlation
function, C(t), in each of the three dynamical phases in order to see, in particular, how
its functional form in the low-temperature regime differs from that of the intermediate one.
Since we found that the relaxation time atT1 is smaller than atT2 (as z1 < z2) and that
the memory effect of the initial damage disappears forT > T2, we expect that (similar
to the 3D spin glasses [23, 24])C(t) in the intermediate phase decays slower than in the
high-temperature regime (where it is probably given by a simple exponential decay) but
faster than in the low-temperature one (where it could be eventually given by a stretched
exponential decay similar to that found for the 2D Ising ferromagnet [37, 22]). Work along
this line is in progress.
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Further studies are needed to clarify the real nature of the unexpected phase. In
particular, remaining uncertainties involve checking whether its upper boundaryT1 is exactly
equal toTc (q = 2) and, in the affirmative case, it would be very interesting to understand
the profound reasons for this coincidence.
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